Multireference error mitigation for quantum computation of chemistry

Abstract

Quantum error mitigation (QEM) strategies are essential for improving the precision and reliability of quantum chemistry algorithms on noisy intermediate-scale quantum devices. Reference-state error mitigation (REM) is a cost-effective chemistry-inspired QEM method that performs exceptionally well for weakly correlated problems. However, the effectiveness of REM is often limited when applied to strongly correlated systems. Here, we introduce multireference-state error mitigation (MREM), an extension of REM that systematically captures quantum hardware noise in strongly correlated ground states by utilizing multireference states. A pivotal aspect of MREM is using Givens rotations to efficiently construct quantum circuits to generate multireference states. To strike a balance between circuit expressivity and noise sensitivity, we employ compact wavefunctions composed a few dominant Slater determinants. These truncated multireference states, engineered to exhibit substantial overlap with the target ground state, can effectively enhance error mitigation in variational quantum eigensolver experiments. We demonstrate the effectiveness of MREM through comprehensive simulations of molecular systems H2O, N2, and F2, underscoring its ability to realize significant improvements in computational accuracy compared to the original REM method. MREM broadens the scope of error mitigation to encompass a wider variety of molecular systems, including those exhibiting pronounced electron correlation.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
16 May 2025
Accepted
28 Jul 2025
First published
29 Jul 2025
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2025, Accepted Manuscript

Multireference error mitigation for quantum computation of chemistry

H. Zou, E. Magnusson, H. Brunander, W. Dobrautz and M. Rahm, Digital Discovery, 2025, Accepted Manuscript , DOI: 10.1039/D5DD00202H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements