Issue 4, 2025

A multi-centre metal-free COF@g-C3N4 catalyst assembled with covalent bonds for photocatalytic CO2 reduction

Abstract

Photocatalytic carbon dioxide (CO2) reduction technology using solar energy can convert carbon dioxide into fuels and chemicals, and is one of the most effective strategies to mitigate the energy crisis and greenhouse effect. In recent years, covalent organic frameworks (COFs) have flourished due to their unique advantages and have received extensive attention in the field of photocatalytic reduction of CO2. Here, we use the pre-designability of COFs to preserve the aldehyde group at the end of the COF skeleton by the motif strategy, while ensuring its excellent photosensitivity. This facilitates further assembly with amino-terminated g-C3N4 through covalent bonding, resulting in composite catalysts (COF@g-C3N4). This COF@g-C3N4 material can take g-C3N4 as the active center to undertake the main catalytic reaction function, COF as the photosensitive center to absorb light energy and generate photogenerated carriers, and covalent bonds as electron transport bridges, effectively facilitating the transfer of electrons. These three components operate independently yet synergistically to accomplish the photocatalytic CO2 reduction reaction. In addition, by integrating theoretical calculations with experimental results, the electron transfer and reaction mechanism in the photocatalytic process of COF@g-C3N4 were thoroughly explored, and a rational photocatalytic process was proposed. This multi-center metal-free catalyst, COF@g-C3N4, not only exhibits good photocatalytic performance but also is more economical and environmentally friendly, which is worthy of attention.

Graphical abstract: A multi-centre metal-free COF@g-C3N4 catalyst assembled with covalent bonds for photocatalytic CO2 reduction

Supplementary files

Article information

Article type
Paper
Submitted
26 Oct 2024
Accepted
02 Dec 2024
First published
05 Dec 2024

Dalton Trans., 2025,54, 1625-1632

A multi-centre metal-free COF@g-C3N4 catalyst assembled with covalent bonds for photocatalytic CO2 reduction

X. Wang, Z. Wang, Y. Liu, W. Peng, X. Fu, J. Zhou, L. Han, Y. Hua and Z. Zhou, Dalton Trans., 2025, 54, 1625 DOI: 10.1039/D4DT02996H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements