Multilayer SiOx derived from Si–Ca alloy via Fe2O3 oxidization for Li-ion batteries

Abstract

SiOx is deemed a promising candidate for lithium-ion batteries owing to its high specific capacity and relatively low volume expansion. However, its low rate performance is a bottleneck for its application. Two-dimensional SiOx with short lithium-ion pathways and large layer intervals has been a hot research topic for improving the electrochemical performance of lithium-ion batteries. Herein, a solid exfoliation method was designed to synthesize a multilayer SiOx using CaSi2 and Fe2O3. This multilayer SiOx exhibited large layer intervals after the by-products were removed by HCl. The void space provided extra space for volume expansion, which prevented pulverization, and the thin monolayer shortened the Li+ pathways. Therefore, ML-SiOx–Fe2O3 exhibited an excellent reversible capacity of 697.8 mA h g−1 after 200 cycles at 0.5 A g−1 with a capacity retention of 94.2%. Meanwhile, ML-SiOx–Fe2O3 anode delivered a rate performance of 432.7 mA h g−1 at 3 A g−1, and it could be recovered to 1157.1 mA h g−1 when the current density was converted to 0.1 A g−1. This work opens up a new method for synthesizing multilayer SiOx using metal oxides to exfoliate CaSi2.

Graphical abstract: Multilayer SiOx derived from Si–Ca alloy via Fe2O3 oxidization for Li-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2024
Accepted
09 Feb 2025
First published
20 Feb 2025

Dalton Trans., 2025, Advance Article

Multilayer SiOx derived from Si–Ca alloy via Fe2O3 oxidization for Li-ion batteries

H. Dong, H. Xie, Q. Song and Z. Ning, Dalton Trans., 2025, Advance Article , DOI: 10.1039/D4DT03439B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements