CO2 Reduction to CO on an Iron-Porphyrin Complex with Crown-Ether Appended Cation-Binding Site

Abstract

With increasing carbon dioxide concentrations in the atmosphere, the utilization and conversion of CO2 into valuable materials is an important goal. In recent years, evidence has emerged of low-valent iron-porphyrin complexes able to bind CO2 and reduce it to carbon monoxide and water. To find out how the porphyrin scaffold and second coordination sphere influence the CO2 reduction on iron-porphyrin complexes, we study the structure, electronic and redox properties of a novel crown-ether appended porphyrin complex with cation (K+) binding site. Cyclic voltammetry studies show that the K+ binding site does not change the Fe0/I and FeI/II redox potentials of the complexes. Subsequently, density functional theory calculations were performed on the catalytic cycle of CO2 reduction on the K+-bound crown-ether appended iron-porphyrin complex. The work shows that proton-donors such as acetic acid bind the K+ strongly and can assist with efficient and fast proton transfer that leads to the conversion of CO2 to CO and water. In agreement with experiment, the calculations show little perturbations of the redox potentials upon binding K+ to the crown-ether scaffold.

Supplementary files

Article information

Article type
Paper
Submitted
15 Jan 2025
Accepted
18 Feb 2025
First published
19 Feb 2025
This article is Open Access
Creative Commons BY license

Dalton Trans., 2025, Accepted Manuscript

CO2 Reduction to CO on an Iron-Porphyrin Complex with Crown-Ether Appended Cation-Binding Site

C. Zhu, A. K. Surendren, C. D'Agostino, J. Roithová and S. de Visser, Dalton Trans., 2025, Accepted Manuscript , DOI: 10.1039/D5DT00119F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements