Chirality in molecular conductors from enantiopure or racemic coordination complexes
Abstract
There has been growing interest in recent years in the synthesis of multifunctional materials that exhibit both chirality and electrical conductivity. These materials can exhibit electrical magnetochiral anisotropy (eMChA) or the chirality induced spin selectivity (CISS) effect. Several families of chiral tetrathiafulvalene (TTF)-based donor molecules have been successfully used with acceptors or simple anions to prepare chiral molecular conductors. Chiral materials have also been obtained by employing racemic or enantiopure counter anions with chiral or achiral TTF donors. Most recently, enantiopure molecular conductors of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene (BDH-TTP) have been obtained through chiral induction from a racemic mixture of a coordination complex, which provides the anion. This Frontier article provides an overview of chiral molecular conductors and a summary of progress to date. It highlights future perspectives on how chirality can be introduced into molecular conductors by employing enantiopure or racemic coordination complexes, which also have the potential to introduce magnetism into the multifunctional material.
- This article is part of the themed collections: 2025 Frontier and Perspective articles and Dalton Transactions HOT Articles