Issue 22, 2025

Interplay of the Cu⋯Cu distance and coordination geometry as a factor affecting the quantum efficiency in dimeric copper(i) halide complexes with derivatives of 4-pyrazolylpyrimidine-2-thiol

Abstract

Two bicyclic pyrazolylpyrimidine compounds, 2-benzylthio-4-(3,5-dimethyl-1H-pyrazol-1-yl)pyrimidine (LH) and 2-benzylthio-4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methylpyrimidine (LMe), were synthesized and studied as ligands for the preparation of copper(I) halido complexes. In the solid state, LH and LMe demonstrate dual excitation-wavelength dependent emission, i.e. fluorescence at higher excitation energies and phosphorescence at lower excitation energies due to the presence of a heavy sulphur atom. The reactions of LH and LMe with CuBr and CuI afforded a series of centrosymmetric binuclear complexes of the [Cu2L2Hal2] type (L = LH, Hal = Br, I; L = LMe, Hal = I). The possibility of rotation of the benzylthio group relative to the pyrazolylpyrimidine core leads to the isolation of two polymorphic modifications of the copper(I) iodido complex with LH, which differ by the Cu⋯Cu distance by more than 0.2 Å (2.86 Å for [Cu2(LH)2I2] (form I)vs. 2.65 Å for [Cu2(LH)2I2] (form II)). The isolation of the [Cu2(LH)2I2] complex in two different crystalline forms made it possible to reveal the influence of a rarely explored factor, namely the change in the Cu⋯Cu distance in a single molecule, on the photoluminescence quantum efficiency. Two structural indices, τdim, which showcases the degree of merging of CuLHal monomers into the centrosymmetric [Cu2L2Hal2] dimers, and τplan, which characterises the degree of planarization of the N2CuHal2CuN2 unit, were introduced and used for combined experimental and theoretical analyses of the relation between the structure of the complexes and their luminescence. All complexes exhibit phosphorescence of the ligand-to-halide charge transfer (LXCT) character in the orange region. According to TD-DFT calculations, an increase in the Cu⋯Cu distance facilitates structural rearrangement in the T1 state followed by a rapid decrease in the T1–S0 energy gap and subsequent non-radiative decay via electron–phonon coupling, which substantiates the higher photoluminescence quantum yield (PLQY) of [Cu2(LH)2I2] (form II) (Cu⋯Cu 2.65 Å) compared to that of [Cu2(LH)2I2] (form I) (Cu⋯Cu 2.86 Å).

Graphical abstract: Interplay of the Cu⋯Cu distance and coordination geometry as a factor affecting the quantum efficiency in dimeric copper(i) halide complexes with derivatives of 4-pyrazolylpyrimidine-2-thiol

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2025
Accepted
22 Apr 2025
First published
24 Apr 2025

Dalton Trans., 2025,54, 9000-9015

Interplay of the Cu⋯Cu distance and coordination geometry as a factor affecting the quantum efficiency in dimeric copper(I) halide complexes with derivatives of 4-pyrazolylpyrimidine-2-thiol

S. V. Skvortsova, F. K. Verkhov, E. B. Nikolaenkova, M. I. Rakhmanova, T. E. Kokina, T. S. Sukhikh, N. A. Shekhovtsov and M. B. Bushuev, Dalton Trans., 2025, 54, 9000 DOI: 10.1039/D5DT00498E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements