Interplay of the Cu⋯Cu distance and coordination geometry as a factor affecting the quantum efficiency in dimeric copper(i) halide complexes with derivatives of 4-pyrazolylpyrimidine-2-thiol†
Abstract
Two bicyclic pyrazolylpyrimidine compounds, 2-benzylthio-4-(3,5-dimethyl-1H-pyrazol-1-yl)pyrimidine (LH) and 2-benzylthio-4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methylpyrimidine (LMe), were synthesized and studied as ligands for the preparation of copper(I) halido complexes. In the solid state, LH and LMe demonstrate dual excitation-wavelength dependent emission, i.e. fluorescence at higher excitation energies and phosphorescence at lower excitation energies due to the presence of a heavy sulphur atom. The reactions of LH and LMe with CuBr and CuI afforded a series of centrosymmetric binuclear complexes of the [Cu2L2Hal2] type (L = LH, Hal = Br, I; L = LMe, Hal = I). The possibility of rotation of the benzylthio group relative to the pyrazolylpyrimidine core leads to the isolation of two polymorphic modifications of the copper(I) iodido complex with LH, which differ by the Cu⋯Cu distance by more than 0.2 Å (2.86 Å for [Cu2(LH)2I2] (form I)vs. 2.65 Å for [Cu2(LH)2I2] (form II)). The isolation of the [Cu2(LH)2I2] complex in two different crystalline forms made it possible to reveal the influence of a rarely explored factor, namely the change in the Cu⋯Cu distance in a single molecule, on the photoluminescence quantum efficiency. Two structural indices, τdim, which showcases the degree of merging of CuLHal monomers into the centrosymmetric [Cu2L2Hal2] dimers, and τplan, which characterises the degree of planarization of the N2CuHal2CuN2 unit, were introduced and used for combined experimental and theoretical analyses of the relation between the structure of the complexes and their luminescence. All complexes exhibit phosphorescence of the ligand-to-halide charge transfer (LXCT) character in the orange region. According to TD-DFT calculations, an increase in the Cu⋯Cu distance facilitates structural rearrangement in the T1 state followed by a rapid decrease in the T1–S0 energy gap and subsequent non-radiative decay via electron–phonon coupling, which substantiates the higher photoluminescence quantum yield (PLQY) of [Cu2(LH)2I2] (form II) (Cu⋯Cu 2.65 Å) compared to that of [Cu2(LH)2I2] (form I) (Cu⋯Cu 2.86 Å).