Issue 4, 2025

Salting out and nitrogen effects on cloud-nucleating ability of amino acid aerosol mixtures

Abstract

Atmospheric aerosols exist as complex mixtures containing three or more compounds. Ternary aerosol mixtures composed of organic/organic/inorganic can undergo liquid–liquid phase separation (LLPS) under supersaturated conditions, affecting phase morphology and water uptake propensity. Phase separation and water uptake in ternary systems has previously been parameterized by oxygen to carbon (O : C) ratio; however, nitrogen containing organics, such as amino acid aerosols, also exist within complex mixtures. Yet, amino acid mixture CCN activity is poorly understood. In this study, we study the supersaturated hygroscopicity of three systems of internal mixtures containing ammonium sulfate (AS), 2-methylglutaric acid (2-MGA), and an amino acid. The three systems are AS/2-MGA/proline (Pro), AS/2-MGA/valine (Val), and AS/2-MGA/leucine (Leu). The amino acids are similar in O : C ratios but vary in solubility. Water-uptake, across a range of aerosol compositions in the ternary space, is measured using a cloud condensation nuclei counter (CCNC) from 0.4 to 1.7% supersaturation (SS). The single hygroscopicity parameter, κ, was calculated from CCNC measurements. All three systems exhibit two regions; one of these regions is phase separated mixtures when the composition is dominated by AS and 2-MGA; 2-MGA partitions to the droplet surface due to its surface-active nature and has a negligible contribution to water uptake. The second region is a homogeneous aerosol mixture, where all three compounds contribute to hygroscopicity. However, well mixed aerosol hygroscopicity is dependent on the solubility of the amino acid. Mixed Pro aerosols are the most hygroscopic while Leu aerosols are the least hygroscopic. Theoretical κ values were calculated using established models, including traditional κ-Köhler, O : C solubility and O : C-LLPS models. To account for the possible influence of polar N–C bonds on solubility and water uptake, the X : C parameterization is introduced through the X : C solubility and X : C-LLPS models; X : C is obtained from the ratio of oxygen and nitrogen to carbon. The study demonstrates competing organic–inorganic interactions driven by salting out effects in the presence of AS. Traditional methods cannot further encapsulate the non-ideal thermodynamic interactions within nitrogen-containing organic aerosol mixtures thus predictions of LLPS and hygroscopicity in nitrogen containing ternary systems should incorporate surface activity, O–C, N–C bonds, and salting out effects.

Graphical abstract: Salting out and nitrogen effects on cloud-nucleating ability of amino acid aerosol mixtures

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2024
Accepted
25 Jan 2025
First published
28 Jan 2025
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2025,5, 485-501

Salting out and nitrogen effects on cloud-nucleating ability of amino acid aerosol mixtures

N. Ferdousi-Rokib, K. A. Malek, K. Gohil, K. R. Pitta, D. D. Dutcher, T. M. Raymond, M. A. Freedman and A. A. Asa-Awuku, Environ. Sci.: Atmos., 2025, 5, 485 DOI: 10.1039/D4EA00128A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements