Issue 5, 2025

Assessing pH- and temperature-dependence in the aqueous phase partitioning of organic acids and bases in the atmosphere

Abstract

The gas-particle partitioning of low-volatility and semi-volatile organic compounds (L/S-VOCs) plays a dominant role in the formation of secondary organic aerosol, carrying implications for the health and climate effects of atmospheric particulate matter. Partitioning into aqueous particles and cloud droplets can also impact the fates of L/S-VOCs in the atmosphere. As the NH3/NH4+ conjugate pair begins to dominate the buffering capacity of the atmospheric aqueous phase, there is a growing need to consider how changing particle acidity may impact the phase distribution of different ionizable compounds. In this work, we use a partitioning space framework and graphical assessment method to predict the effects of varied pH and temperature on the partitioning behavior of 24 ionizable organic compounds, including carboxylic acids and amines. As pH increases from 2 to 6, amines exhibit significantly increased affinity for the gas phase, whereas a preference for the aqueous phase is generated among several weak acids that would otherwise have remained vapors. We find that temperature can have a strong influence on the partitioning of some compounds. However, temperature-dependence can vary widely between compounds, and our analysis was limited by a lack of enthalpy values, necessitating reliable thermodynamic data for a larger number of L/S-VOCs. We implement a new visualization to investigate the partitioning behavior of lesser-studied compounds under varied conditions, and through this approach we see that aerosol liquid water content can greatly impact pH-sensitivity in partitioning.

Graphical abstract: Assessing pH- and temperature-dependence in the aqueous phase partitioning of organic acids and bases in the atmosphere

Supplementary files

Article information

Article type
Paper
Submitted
11 Mar 2025
Accepted
16 Apr 2025
First published
17 Apr 2025
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2025,5, 591-602

Assessing pH- and temperature-dependence in the aqueous phase partitioning of organic acids and bases in the atmosphere

O. M. Driessen and J. G. Murphy, Environ. Sci.: Atmos., 2025, 5, 591 DOI: 10.1039/D5EA00034C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements