Boosting the reduction of CO2 and dimethylamine for C–N bonding to synthesize DMF via modulating the electronic structures of indium single atoms†
Abstract
The electrocatalytic reduction of CO2 and dimethylamine (HN(CH3)2) for C–N coupling is a promising strategy for synthesizing N,N-dimethylformamide (DMF). However, the generation of suitable coupling intermediates via the dehydrogenation of HN(CH3)2 and reduction hydrogenation of CO2 is the key challenge for achieving C–N bonding to synthesize DMF. We optimized the electronic structure of HN(CH3)2 and CO2 for adsorption on indium single atoms by adjusting the coordination structure, thereby promoting the hydrogen transfer from nitrogen of dimethylamine to CO2, which generated the intermediates of *N(CH3)2 and *COOH for C–N bonding to synthesize DMF. The yield of DMF synthesized on InN3 reached 41.3 μmol L−1 h−1, which was about 12 times greater than that of InN4 at −0.8 V. In situ technology and DFT calculations jointly demonstrated that compared with InN4, InN3 optimized the electron distribution of adsorbed CO2 and HN(CH3)2. The electron density of hydrogen on HN(CH3)2 decreased, exhibiting its electrophilic properties. In addition, oxygen of CO2 accumulated electrons near the dimethylamine end and exhibited strong electron-rich properties, which led to hydrogen transfer from dimethylamine to CO2, generating the species *N(CH3)2 and *COOH that are conducive to C–N coupling to synthesize DMF on InN3. This work provides important theoretical guidance for the C–N coupling of CO2 and amines.