Conversion of photovoltaic waste silicon into amorphous silicon nanowire anodes†
Abstract
The rapid growth of the crystalline silicon (Si) photovoltaic industry has led to a steady increase in the production of waste silicon (wSi) generated during the cutting of Si ingots. Nevertheless, intrinsic oxidation and trace impurities in wSi make it difficult to retain or enhance its value for further use. Herein, we proposed a value-added recycling strategy to flash convert wSi into high performance amorphous Si nanowires (a-SiNWs). This method fully leverages the intrinsic oxidation properties of wSi and utilizes a high temperature gradient thermal field generated by carbon thermal shock to drive the directional diffusion of Si atoms within an oxide-limited domain environment. Copper nanoparticles are introduced to modulate the surface energy of Si atoms, inducing the formation of a-SiNWs. The a-SiNWs grow in situ on a carbon substrate, forming a self-supporting electrode material (identified as a-SiNWs@CC). The prepared a-SiNWs@CC is directly used as the anode of lithium-ion batteries, demonstrating excellent initial coulombic efficiency (ICE, 91.35%) and lithium storage capacity (up to 2150 mA h g−1 at 2 A g−1 for more than 250 cycles). The results hold great promise for the high-value utilization of wSi and the development of Si anodes.
- This article is part of the themed collection: Recent Open Access Articles