Issue 11, 2025

Mechanisms and scale-up potential of 3D solar interfacial-evaporators

Abstract

Evaporation fluxes from porous evaporators under sunlight have been reported to exceed the solar-thermal limit, determined by relating the incoming solar energy to the latent and sensible heat of water, for applications in desalination and brine pond drying. Although flat two-dimensional (2D) evaporators exceeding the solar limit imply a non-thermal process, tall three-dimensional (3D) solar evaporators can exceed it by absorbing additional environmental heat into its cold sidewalls. Through modeling, we explain the physics and identify the critical heights in which a fin transitions from 2D to 3D evaporation and exceeds the solar-thermal limit. Our analyses illustrate that environmental heat absorption in 3D evaporators is determined by the ambient relative humidity and the airflow velocity. The model is then coarse-grained into a large-scale fin array device on the meters scale to analyze their scalability. We identify that these devices are unlikely to scale favorably in closed environment settings such as solar stills. Our modeling clearly illustrates the benefits and limitations of 3D evaporating arrays and pinpoints design choices in previous works that hinder the device's overall performance. This work illustrates the importance in distinguishing 2D from 3D evaporation for mechanisms underlying interfacial evaporation exceeding the solar-thermal limit.

Graphical abstract: Mechanisms and scale-up potential of 3D solar interfacial-evaporators

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
24 Feb 2025
Accepted
22 Apr 2025
First published
24 Apr 2025
This article is Open Access
Creative Commons BY-NC license

Energy Environ. Sci., 2025,18, 5524-5538

Mechanisms and scale-up potential of 3D solar interfacial-evaporators

J. H. Zhang, R. Mittapally, A. Oluwade and G. Chen, Energy Environ. Sci., 2025, 18, 5524 DOI: 10.1039/D5EE01104C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements