Volatile organic compound emissions from a multi-unit residential building to ambient air

Abstract

Emerging sources, such as volatile chemical products (VCPs) and other non-traditional emission categories, are becoming increasingly important in urban air pollution as the contributions of recognized sources such as traffic and industrial emissions decline. Indoor emissions constitute a large fraction of organic gaseous species from these sources, making buildings potential contributors to ambient air pollution. This study illustrates building emissions by presenting findings from a sampling campaign in downtown Toronto, analyzing volatile organic compounds (VOCs) from the mechanical ventilation inlet and exhaust air streams of a multi-unit residential building (110 units). Due to indoor emissions, VOCs were detected more frequently and at higher concentrations (median levels higher by about 22%) in the exhaust stream than in the inlet stream, indicating that the building serves as a net VOC source to the ambient air. VCP-related species were consistently more abundant in the exhaust air, confirming the influence of indoor sources. In particular, median concentrations of volatile methyl siloxanes and monoterpenoids associated with emissions from adhesives, personal care products, and cleaning agents ranged from about 2–5 μg m−3 in the exhaust stream in comparison with 0.2–0.5 μg m−3 within the inlet stream. Source apportionment analysis of VOC concentrations across the exhaust and inlet airstreams revealed indoor emissions of siloxanes, monoterpenoids, and oxygenated VOCs from coatings, cleaners, and personal care products as primary contributors to exhaust stream trends. Net building VOC emissions, defined as the rate of outflowing minus the inflowing VOCs, were calculated from the measured concentrations and ventilation rates. The resulting values aligned with indoor emissions predicted from a published VCP emission inventory for Canada, emphasizing the pivotal impact of VCP indoor sources on urban air quality. Exhaust and inlet stream concentrations of VCP-related species were found to be significantly (p < 0.05) correlated, suggesting the building emissions influencing outdoor VOC levels. These results highlight the crucial impact of indoor emissions, especially from VCPs, on ambient air quality and the need for further research into indoor-to-outdoor pollutant transfer mechanisms to address urban air pollution.

Graphical abstract: Volatile organic compound emissions from a multi-unit residential building to ambient air

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
10 Nov 2024
Accepted
24 Mar 2025
First published
25 Mar 2025
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Processes Impacts, 2025, Advance Article

Volatile organic compound emissions from a multi-unit residential building to ambient air

A. Askari and A. W. H. Chan, Environ. Sci.: Processes Impacts, 2025, Advance Article , DOI: 10.1039/D4EM00689E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements