Removal of psychopharmaceuticals from WWTP effluent by an algae–mussel trophic cascade: a potential nature-based solution?

Abstract

Psychopharmaceuticals are an emerging group of hazardous contaminants that pose a risk to the aquatic environment. Yet, modern wastewater treatment plants (WWTPs) do not remove them sufficiently to alleviate these risks. The present study aimed therefore to explore the effectiveness of an alternative nature-based tertiary treatment of WWTP effluent to remove psychopharmaceuticals. To this end, an algae–mussel trophic cascade setup was designed in which algae were grown in effluent over the course of 11 days and subsequently fed to mussels for a further 3 days. Removal of 30 psychopharmaceuticals for each of the treatments (algae, mussels, algae + mussels) was calculated relative to control samples, and removal efficiency was contextualised by performing an indicative risk assessment. Twelve psychopharmaceuticals were quantified during the experiment, with 11 encountered in all treatments. The compounds fell into 3 categories: positive removal (citalopram, lamotrigine, and venlafaxine), negative removal (carbamazepine, gabapentin, and pregabalin), and no significant changes in concentration (amitriptyline, quetiapine, tramadol, fluvoxamine, lidocaine, and ibuprofen). Both positive and negative removals were largely driven by the presence of the algae rather than that of the mussels. Compounds with a low pKa showed negative removal due to the algal growth induced rise in pH, which was not negated by the mussels at the end of the cascade. Ibuprofen was not removed by any treatment and was also the only compound that represented a substantial risk. The cumulative risks indicated that the algal–mussel cascade actually increased the risk due to the negative removal of compounds present in high concentrations such as carbamazepine. Pregabalin and gabapentin also increased in risk, but did, however, not significantly change the overall risk from the analysed compounds due to their low concentrations. Since the presently designed nature-based treatment could not negate risk, it is not suitable for the removal of psychopharmaceuticals.

Graphical abstract: Removal of psychopharmaceuticals from WWTP effluent by an algae–mussel trophic cascade: a potential nature-based solution?

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
06 Jan 2025
Accepted
08 May 2025
First published
09 May 2025
This article is Open Access
Creative Commons BY license

Environ. Sci.: Water Res. Technol., 2025, Advance Article

Removal of psychopharmaceuticals from WWTP effluent by an algae–mussel trophic cascade: a potential nature-based solution?

C. J. E. Davey, T. V. van der Meer, T. L. ter Laak, P. F. M. Verdonschot and M. H. S. Kraak, Environ. Sci.: Water Res. Technol., 2025, Advance Article , DOI: 10.1039/D5EW00011D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements