N, Fe co-incorporated CoO nanoarray enhanced by magnetic field for efficient water oxidation

Abstract

CoO, as a typical water oxidation electrocatalyst, has gradually entered the bottleneck stage of performance modulation through composition optimization. Herein, the N, Fe co-bonded CoO was achieved by N plasma, which suggests further potential to be enhanced by a magnetic field during oxygen evolution reaction (OER) electrocatalysis. N atoms are a bridge for bonding Fe and Co centers, which serve as a fast channel for electron transfer. N, Fe co-doping decreases the electron density around Co2+ centers, which increases the unpaired electrons for electron acceptors. As a result, the intrinsic OER activities are boosted, which is further beneficial for amplifying the magnetic enhancement effect. The best performance emerges under a parallel magnetic field with 420 mT intensity, which results in a lowered overpotential of 217 mV and a Tafel slope of 25.1 mV dec−1 in alkaline media. The magnetic enhancement comes from the magnetohydrodynamic effect and the escape energy barrier reduction of the paramagnetic triplet state of O2. The magnetic enhancement effect would be amplified when the catalytic current becomes larger (magnetic current is 8 mA and 22 mA under 500 mA and 1000 mA total current, respectively). This work provides an in-depth insight into the magnetic enhancing mechanism and a highly feasible strategy for coupling heteroatoms with the magnetic field to operate and break through the bottleneck of non-noble electrocatalysis performance.

Graphical abstract: N, Fe co-incorporated CoO nanoarray enhanced by magnetic field for efficient water oxidation

Supplementary files

Article information

Article type
Paper
Submitted
09 Feb 2025
Accepted
18 May 2025
First published
20 May 2025
This article is Open Access
Creative Commons BY-NC license

EES Catal., 2025, Advance Article

N, Fe co-incorporated CoO nanoarray enhanced by magnetic field for efficient water oxidation

K. Huang, Y. Yan, Y. Yu, T. Yang, L. Qiao, J. Tu, J. Sui, W. Cai, S. Liu and X. Zheng, EES Catal., 2025, Advance Article , DOI: 10.1039/D5EY00040H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements