Effective production of liquid/wax fuels from polyethylene plastics using Ru/Al2O3 catalysts

Abstract

Hydrogenolysis provides a promising pathway for converting polyolefin plastics into valuable liquid and wax fuels. This process involves dehydrogenation, C–C bond cleavage, and hydrogenation at the active metal sites of the catalyst. Controlling the nature of these metal sites is crucial to optimize overall reaction activity. In this study, Ru catalysts supported on nanosheet-assembled Al2O3 (NA-Al2O3) were used for the hydrogenolysis of polyethylene (PE). Unlike commercial Al2O3, NA-Al2O3 promotes Ru–Al bond formation, leading to stronger metal–support interactions. Under identical Ru loadings, these enhanced interactions resulted in higher Ru dispersion and smaller Ru species on the NA-Al2O3 surface. To investigate the effect of Ru loading, a series of catalysts (xRu/NA-Al2O3, x = 0.5, 1, 5, and 8 wt% Ru) was synthesized, revealing that Ru particle size and electronic properties varied with Ru loading. Among them, the 1Ru/NA-Al2O3 catalyst, featuring optimally sized Ru species (∼0.8 nm) and a tailored electronic structure, demonstrated the highest efficiency in PE hydrogenolysis by effectively suppressing successive C–C bond cleavage. This catalyst achieved an outstanding PE conversion rate of 1.15 × 103 gconverted PE gRu−1 h−1 and a liquid/wax production rate of 9.23 x 102 gliquid/wax gRu−1 h−1, highlighting its superior performance in catalytic PE hydrogenolysis.

Graphical abstract: Effective production of liquid/wax fuels from polyethylene plastics using Ru/Al2O3 catalysts

Supplementary files

Article information

Article type
Paper
Submitted
11 Mar 2025
Accepted
23 Apr 2025
First published
26 Apr 2025
This article is Open Access
Creative Commons BY-NC license

EES Catal., 2025, Advance Article

Effective production of liquid/wax fuels from polyethylene plastics using Ru/Al2O3 catalysts

J. Kim, D. Kim, B. G. Park, D. Oh, S. Lee, J. Kim, E. Nam and K. An, EES Catal., 2025, Advance Article , DOI: 10.1039/D5EY00070J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements