Xenovolatilomic profiling of Hass avocado (Persea americana Mill.) tissues exposed to endosulfan: identification of potential toxicity biomarkers

Abstract

Introduction: Omics sciences, particularly metabolomics and its subfield volatilomics, investigate small molecules to understand biochemical dynamics. Volatilomics targets volatile organic compounds (VOCs), which act as biomarkers for physiological changes, environmental stress, and xenobiotic exposure. Advances in GC-MS and HS-SPME have enabled precise VOC profiling. A critical issue in food safety is pesticide contamination, notably organochlorines like endosulfan, which bioaccumulate and disrupt plant metabolomes. Hass avocado (Persea americana Mill.), rich in lipids and terpenoids, offers an ideal matrix for studying xenovolatilomic responses. Objective: This study evaluated volatilomic alterations induced by endosulfan in Hass avocado using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). It aimed to identify potential toxicity biomarkers associated with pesticide exposure, contributing to rapid, reliable detection methodologies for agricultural products. Methodology: Avocado peel, pulp, and seed were experimentally exposed to endosulfan for 8 and 20 days under controlled conditions. VOCs were extracted by HS-SPME and analyzed by GC-MS. Data were processed and subjected to multivariate statistical analyses, including Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA), random forest, variable importance in projection (VIP) scores, and receiver operating characteristic (ROC) curve analysis to identify VOCs differentially expressed under pesticide exposure. Results: Random forest and PLS-DA analyses identified five key VOCs as potential toxicity biomarkers: (E)-2-octenal (V93), oct-3-en-2-one (V86), decanal (V129), hexanal (V29), and nonanal (V102). These compounds exhibited significant concentration changes based on exposure time (8 and 20 days) and tissue type. Additionally, an unknown compound (VX83) emerged as a potential biomarker requiring future characterization. Conclusions: This study constitutes the first xenovolatilomic investigation in Hass avocado and validates the use of (E)-2-octenal, oct-3-en-2-one, decanal, hexanal, and nonanal as potential toxicity biomarkers for the early detection of pesticide-induced biochemical alterations. The integration of volatilomic profiling with multivariate statistical and biochemical analyses provides a solid foundation for developing rapid diagnostic tools and advancing computational metabolomics models for predicting pesticide-induced enzymatic inhibition processes. These findings have implications for food safety, export quality assurance, and the economic sustainability of agricultural production systems in regions like Caldas, Colombia.

Graphical abstract: Xenovolatilomic profiling of Hass avocado (Persea americana Mill.) tissues exposed to endosulfan: identification of potential toxicity biomarkers

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
25 Apr 2025
Accepted
06 Jul 2025
First published
16 Jul 2025
This article is Open Access
Creative Commons BY-NC license

Sustainable Food Technol., 2025, Advance Article

Xenovolatilomic profiling of Hass avocado (Persea americana Mill.) tissues exposed to endosulfan: identification of potential toxicity biomarkers

J. P. Betancourt Arango, A. Patiño Ospina, J. A. Fiscal Ladino and G. Taborda Ocampo, Sustainable Food Technol., 2025, Advance Article , DOI: 10.1039/D5FB00163C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements