Web-BO: towards increased accessibility of Bayesian optimisation (BO) for chemistry

Abstract

Historically, the chemical discovery process has predominantly been a matter of trial-and-improvement, where small modifications are made to a chemical system, guided by chemical knowledge, with the aim of optimising towards a target property or combination of properties. While a trial-and-improvement approach is frequently successful, especially when assisted by the help of serendipity, the approach is incredibly time- and resource-intensive. Complicating this further, the available chemical space that could, in theory, be explored is remarkably vast. As we are faced with near infinite possibilities and limited resources, we require improved search methods to effectively move towards desired optima, e.g. chemical systems exhibiting a target property, or several desired properties. Bayesian optimisation (BO) has recently gained significant traction in chemistry, where within the BO framework, prior knowledge is used to inform and guide the search process to optimise towards desired chemical targets, e.g. optimal reaction conditions to maximise yield, or optimal catalyst exhibiting improved catalytic activity. While powerful, implementing BO algorithms in practice is largely limited to interfacing via various APIs – requiring advanced coding experience and bespoke scripts for each optimisation task. Further, it is challenging to seamlessly link these with electronic lab notebooks via a graphical user interface (GUI). Ultimately, this limits the accessibility of BO algorithms. Here, we present Web-BO, a GUI to support BO for chemical optimisation tasks. We demonstrate its performance using an open source dataset and associated emulator, and link the platform with an existing electronic lab notebook, datalab. By providing a GUI-based BO service, we hope to improve the accessibility of data-driven optimisation tools in chemistry; https://suprashare.rcs.ic.ac.uk/web-bo/.

Graphical abstract: Web-BO: towards increased accessibility of Bayesian optimisation (BO) for chemistry

Associated articles

Article information

Article type
Paper
Submitted
22 May 2024
Accepted
26 Jul 2024
First published
30 Jul 2024
This article is Open Access
Creative Commons BY-NC license

Faraday Discuss., 2025, Advance Article

Web-BO: towards increased accessibility of Bayesian optimisation (BO) for chemistry

A. M. Mroz, P. N. Toka, E. A. del Río Chanona and K. E. Jelfs, Faraday Discuss., 2025, Advance Article , DOI: 10.1039/D4FD00109E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements