Quinoa bran polyphenol extract attenuates high-fat diet induced non-alcoholic fatty liver disease in mice

Abstract

Quinoa bran is a by-product of quinoa processing and is rich in polyphenolic bioactives. Previous studies have shown that polyphenol compounds can help alleviate metabolic diseases, but studies on quinoa bran polyphenols intervening in non-alcoholic fatty liver disease (NAFLD) have not yet been reported. In this study, a C57BL/6J mouse NAFLD model was established using a high-fat diet (HFD) to explore the interventional effects of quinoa bran polyphenol extract (QBP) on NAFLD in mice. The results showed that QBP was effective in attenuating abnormal lipid metabolism and hepatic fat accumulation and reducing inflammation in NAFLD mice. 16S rRNA sequencing analysis showed that QBP regulated the composition of the gut microbiota by increasing the abundance of beneficial bacteria Clostridium_innocuum_group, Clostridium_sensu_stricto_13, Ruminococcus_gnavus_group, Coriobacteriaceae_UCG_002 and UBA1819. Untargeted metabolomics identified 51 differential metabolites due to QBP supplementation. Functional predictions indicated that starch and sucrose metabolism and pentose and gluconate interconversion are key metabolic pathways for QBP to attenuate NAFLD, which may be influenced by the gut microbiota. These results demonstrated the potential application of QBP interventions for NAFLD.

Graphical abstract: Quinoa bran polyphenol extract attenuates high-fat diet induced non-alcoholic fatty liver disease in mice

Supplementary files

Article information

Article type
Paper
Submitted
04 Jun 2024
Accepted
11 Feb 2025
First published
12 Feb 2025

Food Funct., 2025, Advance Article

Quinoa bran polyphenol extract attenuates high-fat diet induced non-alcoholic fatty liver disease in mice

M. Sun, H. Ma, Y. Miao and M. Zhang, Food Funct., 2025, Advance Article , DOI: 10.1039/D4FO02647K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements