Development of 3D-printed foods incorporating riboflavin-loaded whey protein isolate nanostructures: characterization and in vitro digestion†
Abstract
3D printing has emerged as a groundbreaking technology, aiming to enhance sensory attributes and improving nutritional/functional aspects. Simultaneously, nano-delivery systems have emerged as an opportunity to protect bioactive compounds against degradation and improve their bioaccessibility. Therefore, a novel concept is underway, involving the 3D printing of perishable healthy foods previously fortified with bioactive compound-loaded nanostructures. As a model concept, whey protein isolate (WPI) nanostructures were associated with riboflavin with an efficiency of 59.2%. Carrot pastes with adequate printability, shape retention and rheological characteristics were formulated. Riboflavin-WPI loaded nanostructures were incorporated into carrot inks and submitted to a static in vitro digestion. There was a notable increase in riboflavin bioaccessibility (+23.1%), suggesting a synergistic interaction between WPI nanostructures and carrot matrix. These results may contribute to validating the use of WPI nanostructures as effective encapsulating systems allied with 3D food printing towards the development of functional foods with personalized structure and nutrition profile.