Investigating the neuroprotective effects of polyunsaturated fatty acids in egg yolk phospholipids upon oxidative damage in HT22 cells
Abstract
Egg yolk phospholipids are primarily composed of various fatty acids, lysophosphatidylcholine and lysophosphatidylethanolamine. Existing studies have revealed the neuroprotective activity of egg yolk phospholipids. However, it is not clear which digestion products of phospholipids exert neuroprotective activity. The objective of this study was to investigate the neuroprotective effects of different structural components in egg yolk phospholipids based on a DMNQ-induced oxidative damage in HT22 cells. The findings demonstrated that pre-treatment with diverse egg yolk phospholipid components, particularly the polyunsaturated fatty acids, markedly elevated the cell viability and superoxide dismutase activity, diminished the ROS generation, reduced the malondialdehyde levels and elevated the mitochondrial membrane potential. Furthermore, RNA-Seq analysis demonstrated that unsaturated fatty acids exert its neuroprotective effects by upregulating the genes involved in cell proliferation (Jag2 and Ypel3), nervous system development (Ntf5), DNA damage repair (H2ax), and other related processes. These findings provide a theoretical basis for future studies on the characteristic structure of egg yolk phospholipids with profound neuroprotective effects.