Issue 11, 2025

The natural dihydrochalcone phloretin reduces lipid accumulation via downregulation of IIS and sbp-1/SREBP pathways in HepG2 cells and Caenorhabditis elegans

Abstract

Phloretin, a natural dihydrochalcone, exhibits significant potential in modulating lipid metabolism both in vitro and in vivo. This study investigated the effects of phloretin on lipid accumulation in HepG2 cells and Caenorhabditis elegans. In HepG2 cells, phloretin reduced lipid accumulation, ROS levels, and lipid peroxidation while ameliorating mitochondrial dysfunction. It downregulated lipid synthesis genes (SREBP, FASN) and upregulated PI3K-AKT pathway genes (AKT, FOXO, MTOR). In C. elegans, phloretin alleviated lipid accumulation-induced growth and locomotor impairments, reduced lipofuscin, ROS, glucose, and triglyceride levels, and modulated amino acid and lipid metabolism pathways. Gene expression analysis revealed downregulation of sbp-1, mdt-15, fat-5, fat-6, and fat-7, and upregulation of daf-16, age-1, and skn-1. Mutant studies confirmed that phloretin's lipid-lowering effects were mediated through the IIS and sbp-1/SREBP pathways. These findings suggest phloretin is a promising candidate for regulating lipid metabolism and preventing hyperlipidemia.

Graphical abstract: The natural dihydrochalcone phloretin reduces lipid accumulation via downregulation of IIS and sbp-1/SREBP pathways in HepG2 cells and Caenorhabditis elegans

Supplementary files

Article information

Article type
Paper
Submitted
03 Mar 2025
Accepted
11 Apr 2025
First published
16 Apr 2025

Food Funct., 2025,16, 4383-4398

The natural dihydrochalcone phloretin reduces lipid accumulation via downregulation of IIS and sbp-1/SREBP pathways in HepG2 cells and Caenorhabditis elegans

Q. Gu, L. Wang, M. Xu, W. Zhou, G. Liu, H. Tian, T. Efferth, C. Wang and Y. Fu, Food Funct., 2025, 16, 4383 DOI: 10.1039/D5FO01105A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements