Issue 6, 2025

Monolithic, hybrid and particulate lignin-based hydrogels for sustainable CO2 capture

Abstract

Amine-infused hydrogels (AIHs) represent a promising platform for developing solid absorbents with improved CO2 absorption capacity. However, most of them rely on petroleum-based and toxic monomers. Lignin nanoparticles (LNPs) are becoming prominent players at the interface between sustainable nanomaterials technology and chemical science due to their high surface-area-to-mass ratio, which allows them to interact with multiple active compounds. Capitalizing on this spherical morphology and high surface area, the present work presents a strategy to prepare hybrid and particulate lignin-based hydrogels that can act as amine carriers for CO2 capture. The entire process is based on the internal stabilization of LNPs via intraparticle cross-linking process and subsequent base-catalyzed ring-opening reaction between LNPs and poly(ethylene glycol) diglycidyl ether in aqueous media. Upon swelling the hydrogel with an amine solution, hybrid and particulate lignin-based AIHs rapidly capture CO2 with a higher overall uptake compared to commonly used aqueous amine solutions under similar experimental conditions, while also stand and in some cases surpass the performance of other AIHs reported in the literature. Additionally, these new materials can be easily regenerated multiple times with minimal decrease in CO2 absorption capacity, demonstrating their potential application in decarbonization capture technologies.

Graphical abstract: Monolithic, hybrid and particulate lignin-based hydrogels for sustainable CO2 capture

Supplementary files

Article information

Article type
Paper
Submitted
30 Oct 2024
Accepted
15 Jan 2025
First published
16 Jan 2025
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2025,27, 1828-1837

Monolithic, hybrid and particulate lignin-based hydrogels for sustainable CO2 capture

A. Moreno, J. Delgado-Lijarcio, J. C. Ronda, M. Galià and G. Lligadas, Green Chem., 2025, 27, 1828 DOI: 10.1039/D4GC05489J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements