Mechanochemical approach to polymer-functionalized black phosphorus nanomaterials for precious metal recovery†
Abstract
Rapid and sustainable methods for precious metal recovery are urgently needed to support circular economy initiatives. Herein, we introduce a one-pot mechanochemical route to synthesize a black phosphorus–polyglycerol (BP–PG) nanohybrid with enhanced interfacial reactivity for selective gold ion reduction. The process transforms inexpensive red phosphorus directly into amorphous BP and, subsequently, into BP–PG via planetary ball milling, thereby eliminating high temperatures, extended reaction times, and toxic solvents commonly used in conventional functionalized-BP nanomaterial syntheses. This “grafting-from” polymerization of glycidol onto BP yields a uniform, hydrophilic hybrid that can rapidly and selectively reduce gold ions to stabilized gold nanoparticles. Notably, BP–PG recovers more than three times its own weight in gold, far surpassing previously reported materials, while leveraging a scalable, cost-effective, and green production method. These findings underscore the critical role of synthetic strategy and material architecture in achieving high-performance nanohybrids, offering promising opportunities for precious metal recovery and broader interface-driven applications.