Aerobic oxidation of a covalent organic framework facilitating photocatalytic CO2 reduction with water†
Abstract
Photocatalytic CO2 reduction offers a promising approach for solar-to-chemical energy conversion. Achieving CO2 reduction under an aerobic environment is challenging, primarily owing to the competitive O2 reduction reaction at metal active sites. Herein, we demonstrate a hybrid photocatalyst of N3-COF/MoS2, where an azine-linked COF serves as a metal-free active site for CO2 reduction. The hybrid exhibits enhanced catalytic performance in CO2 reduction under aerobic conditions. At 20% O2 concentration, close to the atmospheric O2 content, the CO production rate reaches 28 μmol g−1 h−1, which is much higher than that obtained using pure CO2. Structural, in situ spectroscopic and computational analyses reveal that the oxidation of azine groups in the COF by O2 induces the formation of highly active radical intermediates, which can suitably and preferentially react with CO2, resulting in the enhanced CO2 reduction performance in the presence of O2. This work provides a fresh insight into designing photocatalysts applied under ambient conditions for solar energy conversion.