Molecular topology-driven benzocyclobutene-based ultralow dielectrics with copper-matched low thermal expansion

Abstract

To address the critical challenge of balancing ultralow dielectric constant (k) with low coefficient of thermal expansion (CTE) in high-frequency electronic applications, this study develops a series of tri-armed benzocyclobutene (BCB)-based resins via rational molecular design. Five functional monomers (Ph-BCB, Ph-ene-BCB, Ph-yne-BCB, TPA-yne-BCB, TPB-yne-BCB) were synthesized through Suzuki, Heck, and Sonogashira coupling reactions, followed by thermal curing to form crosslinked polymers. The introduction of branched architectures and rigid conjugated cores effectively enhanced free volume fraction while suppressing molecular chain mobility, achieving synergistic optimization of dielectric and thermomechanical properties. The cured resins exhibited exceptional performance: dielectric constants as low as 1.83 (TPA-yne-BCB) at 1 kHz, dielectric loss below 0.0015, and CTE values ranging from 19.23–34.63 ppm/℃, closely matching copper (16 ppm/℃). The SAXS and WAXS analyses confirmed that enlarged free volume and reduced polarization from optimized topology were key to low-k performance. Additionally, the materials demonstrated outstanding thermal stability (5% weight loss >500°C), high mechanical strength (elastic modulus up to 10 GPa), and hydrophobicity (water absorption <2%). This work provides a groundbreaking strategy for designing high-performance dielectric materials for 5G millimeter-wave packaging, flexible electronics, and 3D heterogeneous integration.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
08 Apr 2025
Accepted
30 May 2025
First published
05 Jun 2025
This article is Open Access
Creative Commons BY-NC license

Ind. Chem. Mater., 2025, Accepted Manuscript

Molecular topology-driven benzocyclobutene-based ultralow dielectrics with copper-matched low thermal expansion

M. Li, L. Fan, Q. Sun, M. Xie, J. Guo and W. Fu, Ind. Chem. Mater., 2025, Accepted Manuscript , DOI: 10.1039/D5IM00051C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements