Microfluidics for geosciences: metrological developments and future challenges
Abstract
This review addresses the main metrological developments over the past decade for microfluidics applied to geosciences. Microfluidic experiments for geosciences seek to decipher the complex interplay between coupled, multiphase, and reactive processes in geological porous media, e.g., for groundwater management, soil remediation, gas storage in geological reservoirs, or geothermal energy. The guiding principle is to represent natural or engineered processes in a controlled environment to observe, characterize, and model them. When microfluidic experiments are associated with advanced metrology techniques, they provide direct visualization of the processes and measurements of transport mechanisms, chemical reactions, interfacial processes, or mixing within the pore space. In this review, we present the state of the art in metrological approaches to microfluidics for geosciences, including measuring velocity fields, fluid and solute saturations, tracking chemical reactions, and combining experimental and computational microfluidics. The upscaling from microfluidics to the reservoir scale is discussed. Finally, we outline future challenges related to metrological advancements and the integration of artificial intelligence in microfluidics.
- This article is part of the themed collection: Lab on a Chip Review Articles 2025