Acoustic microstreaming and augmentation of gas exchange using an oscillating membrane towards microfluidic artificial lungs

Abstract

This paper presents a novel configuration for generating acoustic microstreaming flows at audible frequencies within a microchannel utilizing a pinned oscillating membrane. The characterization and interactions of these acoustic streaming flows with the streamwise flow within the microchannel are investigated, along with their effects on gas exchange augmentation. Advanced characterization methods and computational fluid dynamics simulations show a similar pattern and magnitude in acoustic streaming, providing evidence that this flexural membrane oscillation is the driving mechanism of the time-averaged vortices. This method exhibits potential application to microfluidic artificial lungs, particularly due to the vertical orientation of the resulting mixing, which facilitates an augmentation of gas exchange across the permeable membrane. Furthermore, it eliminates any obstructions in the microchannel and ensures stability, as opposed to other acoustic streaming methods such as sharp edge and oscillating bubble methods. Successful augmentation of gas exchange by up to 3.7× is demonstrated as shown by characterization of CO2 transferred into the channel. Scaling up of throughput is also demonstrated with a branching design, featuring a multilayer manifold to avoid undesirable interaction of the streaming flow with the channel geometry.

Graphical abstract: Acoustic microstreaming and augmentation of gas exchange using an oscillating membrane towards microfluidic artificial lungs

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
30 Jan 2025
Accepted
28 May 2025
First published
29 May 2025
This article is Open Access
Creative Commons BY-NC license

Lab Chip, 2025, Advance Article

Acoustic microstreaming and augmentation of gas exchange using an oscillating membrane towards microfluidic artificial lungs

A. Mercader and S. K. Cho, Lab Chip, 2025, Advance Article , DOI: 10.1039/D5LC00109A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements