Magnetic properties of a non-centrosymmetric polymorph of FeCl3†
Abstract
The growth of single crystals of FeCl3, through sublimation and from the melt, is presented alongside a thorough investigation of their magnetostructural properties through a combination of DC magnetization and AC magnetic susceptibility measurements, single crystal X-ray diffraction (SCXRD), neutron powder diffraction (NPD) and small-angle neutron scattering (SANS). A new chiral polymorph of FeCl3 is identified, crystallizing in the non-centrosymmetric space group P31. NPD and SANS reveal that a weakly first-order magnetic phase transition occurs from a paramagnetic phase with significant short-range correlations to an antiferromagnetic phase at TN = 8.6 K, best described by the magnetic propagation vector k = (1/2, 0, 1/3) which differs from the previously reported magnetic structure of the well-known centrosymmetric polymorph (space group R). We show that disordered crystallographic models including a large number of stacking faults are required to accurately reproduce the scattering observed in NPD patterns, preventing full determination of the magnetic structure. The magnetic field and temperature-dependent behavior of the intensities of the k = (1/2, 0, 2/3) and (1/2, 0, 5/3) magnetic Bragg peaks measured by SANS suggest that a field-induced spin reorientation occurs at H = 40 kOe when H‖c-axis and at a significantly lower field of H ≈ 25 kOe when H⊥c-axis. Above these magnetic fields in both cases the spins lie predominantly in the basal plane. The long-range magnetic ordering and the field-induced transitions observed in the neutron scattering experiments coincide with anomalies observed in the magnetisation versus both temperature and applied field along the principal crystal directions.
- This article is part of the themed collection: In Honor of Professor Thom Palstra