One step gamma-ray induced crosslinking and sterilization of electrospun poly(ε-caprolactone)/collagen composite scaffolds
Abstract
Sterilizing biomaterials before implantation is crucial, but this process can sometimes alter the physical, chemical, and morphological properties of collagen-based biomaterials, potentially leading to weaknesses. To address this issue, we propose a method that combines crosslinking and sterilization of collagen-based composite scaffolds through gamma-ray irradiation. In this study, poly(ε-caprolactone) (PCL)/collagen composite scaffolds were fabricated using an electrospinning technique and exposed to gamma rays at doses ranging from 15 to 45 kGy. The radiation dose was optimized to enhance mechanical properties, which indicated a higher degree of collagen crosslinking. Additionally, we demonstrated that both Gram-positive and Gram-negative bacteria were completely and effectively sterilized during the crosslinking process. In conclusion, gamma-ray irradiation shows great promise as a method for simultaneously inducing crosslinking and sterilization in collagen-based scaffolds, offering substantial potential for biomedical applications.