Fabrication of a mesoporous CoFe2O4/rGO nanohybrid and laccase interface biosensor for rapid detection of adrenaline for neurodegenerative disease diagnosis

Abstract

A hydrothermally synthesized mesoporous CoFe2O4 (CF)/reduced graphene oxide (rGO) nanohybrid (nh) provides the electroactive surfaces and facilitates fast electron transfer between the nanofabricated bioelectrode–electrolyte interfaces, responsible for the high electrocatalytic activity in sensing adrenaline (AD). A promising biosensor for detecting adrenaline and bovine serum albumin (BSA) used as a real sample for diagnosing neurodegenerative diseases is described here. This study focuses on the electrochemical impedance biosensing of AD because of its unique ability to identify various kinds of health issues, including blood pressure, fight-or-flight response, memory loss, multiple sclerosis, Parkinson's disease, and cardiac asthma. A La/CF/rGO/ITO bioelectrode (La: Laccase) is the biosensor component. It is created by electrophoretic deposition (EPD) of a CF/rGO nh and drop-casting immobilization of the La-enzyme. The low charge-transfer resistance (Rct) of the CF/rGO electrode was sensed by electrochemical impedance spectroscopy (EIS), confirming the synergistic impact of CF/rGO on the La/CF/rGO/ITO fabricated bioelectrode in AD detection. This gives the high heterogeneous rate constant (Ks: 2.83 × 10−4) and increases the surface adsorption and diffusion coefficient (D: 5.25 × 10−2 cm2 s−1). The proposed biosensor exhibited high sensitivity (0.214 Ω μM−1 cm−2), long linear range (1 to 500 μM), lower detection limit (LoD: 40.3 μM), high selectivity (RSD 5.8%), and stability with good recovery %, emphasizing its potential implementation in biosensing techniques for monitoring neurotransmitter disorders in real world applications.

Graphical abstract: Fabrication of a mesoporous CoFe2O4/rGO nanohybrid and laccase interface biosensor for rapid detection of adrenaline for neurodegenerative disease diagnosis

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
09 Dec 2024
Accepted
12 Feb 2025
First published
27 Feb 2025
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2025, Advance Article

Fabrication of a mesoporous CoFe2O4/rGO nanohybrid and laccase interface biosensor for rapid detection of adrenaline for neurodegenerative disease diagnosis

R. Verma, S. K. Yadav, D. Singh and J. Singh, Mater. Adv., 2025, Advance Article , DOI: 10.1039/D4MA01216J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements