Novel benzimidazole hybrids: design, synthesis, mechanistic studies, antifungal potential and molecular dynamics

Abstract

In this study, two series of benzimidazole hybrids were developed and designed using different strategies. The target compounds were designed through straight chemistry pathways and were screened as possible antimicrobial agents. Twenty new compounds were synthesized, among which compounds 11 and 12 displayed excellent activity against Candida albicans and Cryptococcus neoformans with growth inhibition percentage ranging from 86.42% to 100%. For gaining better insights into the mechanistic ability of the active candidates 11 and 12, their inhibitory activity against lanosterol 14α-demethylase was studied. Results showed IC50 values of 5.6 and 7.1 μM for 11 and 12, respectively, which were comparable to the reference value of fluconazole (2.3 μM), indicating low drug interaction possibilities. Notably, compound 11 displayed excellent inhibition of biofilm metabolic activity. In addition, their synergistic activity against C. neoformans displayed a 2-fold increase compared with fluconazole. Furthermore, it exhibited sustained antifungal activity with time clearance of over 24 h, which was better than the time clearance of fluconazole (6 h). Moreover, compounds 11 and 12 displayed considerable safety profiles, with no cytotoxicity reported against human embryonic kidney cells or hemolysis of red blood cells. Molecular dynamics simulation (MDS) experiments over 100 ns of compound 11 showed its ability to interact with the HEM binding site as the co-crystallized ligand (fluconazole). Finally, in silico ADMET studies predicted its significant oral bioavailability as antifungal candidates.

Graphical abstract: Novel benzimidazole hybrids: design, synthesis, mechanistic studies, antifungal potential and molecular dynamics

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Research Article
Submitted
07 Feb 2025
Accepted
18 Apr 2025
First published
27 May 2025

RSC Med. Chem., 2025, Advance Article

Novel benzimidazole hybrids: design, synthesis, mechanistic studies, antifungal potential and molecular dynamics

A. A. Ibrahim, E. G. Said, A. M. AboulMagd, N. H. Amin and H. M. Abdel-Rahman, RSC Med. Chem., 2025, Advance Article , DOI: 10.1039/D5MD00122F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements