Harnessing peptide–cellulose interactions to tailor the performance of self-assembled, injectable hydrogels

Abstract

Taking inspiration from natural systems, such as spider silk and mollusk nacre, that employ hierarchical assembly to attain robust material performance, we leveraged matrix–filler interactions within reinforced polymer–peptide hybrids to create self-assembled hydrogels with enhanced properties. Specifically, cellulose nanocrystals (CNCs) were incorporated into peptide–polyurea (PPU) hybrid matrices to tailor key hydrogel features through matrix–filler interactions. Herein, we examined the impact of peptide repeat length and CNC loading on hydrogelation, morphology, mechanics, and thermal behavior of PPU/CNC composite hydrogels. The addition of CNCs into PPU hydrogels resulted in increased gel stiffness; however, the extent of reinforcement of the nanocomposite gels upon nanofiller inclusion also was driven by PPU architecture. Temperature-promoted stiffening transitions observed in nanocomposite PPU hydrogels were dictated by peptide segment length. Analysis of the peptide secondary structure confirmed shifts in the conformation of peptidic domains (α-helices or β-sheets) upon CNC loading. Finally, PPU/CNC hydrogels were probed for their injectability characteristics, demonstrating that nanofiller–matrix interactions were shown to aid rapid network reformation (∼10 s) upon cessation of high shear forces. Overall, this research showcases the potential of modulating matrix–filler interactions within PPU/CNC hydrogels through strategic system design, enabling the tuning of functional hydrogel characteristics for diverse applications.

Graphical abstract: Harnessing peptide–cellulose interactions to tailor the performance of self-assembled, injectable hydrogels

Supplementary files

Article information

Article type
Paper
Submitted
26 Jan 2025
Accepted
20 May 2025
First published
02 Jun 2025
This article is Open Access
Creative Commons BY-NC license

Mol. Syst. Des. Eng., 2025, Advance Article

Harnessing peptide–cellulose interactions to tailor the performance of self-assembled, injectable hydrogels

J. A. Thomas, A. H. Balzer, S. Kalidindi and L. T. J. Korley, Mol. Syst. Des. Eng., 2025, Advance Article , DOI: 10.1039/D5ME00009B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements