Laterally shifted dipole effect on the three-dimensional microstructures of Janus magnetic colloidal suspensions

Abstract

The three-dimensional microstructures of a dilute suspension of magnetic Janus colloids with a magnetic dipole laterally displaced from their center were studied using Brownian dynamics simulations. The microstructure and aggregation properties were obtained from the temporal evolution of the positions and orientations of the colloidal particles. The mean average cluster size, the nucleation and growth process, the cluster size distribution, the orientational distribution, and the effective radius of the clusters were evaluated for different values of Janus balance, i.e., the lateral dipolar shift (s)—dimensionless with the particle radius and taking values in the range of 0 ≤ s ≤ 1. At small dipolar shifts (s → 0), chain- and ring-shaped structures are formed that are typically observed in particles with a centered dipole (s = 0). However, at intermediate dipolar shifts (0.2 ≤ s ≤ 0.4), structures mainly form vesicles that in some cases coexist with rings and spherical micelles. Finally, for s > 0.4, spherical micelles are observed that progressively decrease in size as s increases until clusters of 2 or 3 particles are reached. For intermediate and high dipolar shifts, the typical power-law aggregation is broken down, and the system saturates to a few particles per cluster. Therefore, the observed structural behavior could allow the better design of drug delivery encapsulation materials or, in turn, suspensions designed with high stability. This study suggests that new magnetic fluids can be designed by controlling the dipolar displacement of their component particles thereby influencing their microstructure and consequent macroscopic properties.

Graphical abstract: Laterally shifted dipole effect on the three-dimensional microstructures of Janus magnetic colloidal suspensions

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
24 Feb 2025
Accepted
07 Jul 2025
First published
10 Jul 2025

Mol. Syst. Des. Eng., 2025, Advance Article

Laterally shifted dipole effect on the three-dimensional microstructures of Janus magnetic colloidal suspensions

J. F. Menacho-Abanto, U. M. Córdova-Figueroa and R. A. DeLaCruz-Araujo, Mol. Syst. Des. Eng., 2025, Advance Article , DOI: 10.1039/D5ME00029G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements