Simulation and experimental evaluation of a freestanding triboelectric layer nanogenerator for self-powered electronics†
Abstract
With the world swiftly evolving towards technology, the relentless quest for sustainable energy sources has garnered significant attention. Amidst the scientific advancements, triboelectric nanogenerators (TENGs) have emerged as a beacon of hope, providing a promising solution through energy generation from the ambient environment. This paper focuses on the development of a freestanding triboelectric layer (FTL) TENG for increasing output power energy by incorporating a PTFE layer. A comprehensive investigation is performed that involves mathematical modeling and COMSOL simulation of the FTL TENG. Experimentally, the novel FTL TENG is designed and fabricated using fur and PTFE/Cu electrodes. The results show a two-fold enhancement in the performance of the FTL TENG upon incorporating a PTFE layer over copper electrodes. The simulation results accurately predict voltage build up under open-circuit conditions and substantial current flow under short-circuit conditions, closely mirroring experimental results. The study also demonstrates the practicality of the FTL TENG in powering electronic devices through successful capacitor charging. This research underscores the FTL TENG's reliability as a clean and sustainable energy harvesting solution with potential applications across various fields, thereby illuminating the path towards self-powered electronic devices.