Scaled-down ionic liquid-functionalized geopolymer memristors†
Abstract
Whereas most memristors are fabricated using sophisticated and expensive manufacturing methods, we recently introduced low-cost memristors constructed from sustainable, porous geopolymers (GP) at room temperature via simple casting processes. These devices exhibit resistive switching via electroosmosis and voltage-driven ion mobility inside water-filled channels within the porous material, enabling promising synaptic properties. However, GP memristors were previously fabricated at the centimeter scale, too large for space-efficient neuromorphic computing applications, and displayed limited memory retention durations due to water evaporation from the pores of the GP material. In this work, we overcome these limitations by implementing (i) an inexpensive manufacturing method that allows fabrication at micron-scale (99.998% smaller in volume than their centimeter-scale counterparts) and (ii) functionalization of GPs with EMIM+ Otf− ionic liquid (IL), which prolonged retention of the memristive switching properties by 50%. This improved class of GP-based memristors also demonstrated ideal synaptic properties in terms of paired-pulse facilitation (PPF), paired-pulse depression (PPD), and spike time dependent plasticity (STDP). These improvements pave the way for using IL-functionalized GP memristors in neuromorphic computing applications, including reservoir computing, in-memory computing, memristors crossbar arrays, and more.