Mesoscale superlubric Brownian machine based on 2D graphitic interfaces

Abstract

Brownian motors utilize thermal activation and asymmetric physical interactions to generate directed motion of nanoscale elements in space. On the other hand, structural superlubricity refers to a macroscopic correlated state of nearly vanishing friction due to structural mismatch between sliding interfaces. In fact, the effective sliding barrier in these systems was shown to depend on temperature, manifested by the thermal lubrication phenomenon. Herein, the unique combination of a carefully designed tilted periodic potential landscape and virtually zero friction in 2D layered systems are used to demonstrate mesoscopic superlubric Brownian operation. We perform mechanical shearing of superlubric graphite contacts to examine the influence of velocity on friction and adhesion. Our results show that while friction is virtually independent of velocity below 2500 nm s−1, the adhesion force increases by ∼10% with respect to the lowest measured velocity. This indicates that the system can intriguingly exhibit a counterclockwise hysteretic force loop in which a greater amount of energy can be generated once the retraction velocity is set above the protraction velocity, which is explained by utilizing the available thermal energy to reduce adhesion. The ability to realize mesoscopic mechanical systems that can conceptually extract useful mechanical energy by thermal fluctuations can potentially lead to disruptive technologies such as artificial surfaces, in which controlled motion of elements is manifested by manipulated Brownian motion and self-powered actuators with energy harvest capabilities.

Graphical abstract: Mesoscale superlubric Brownian machine based on 2D graphitic interfaces

Supplementary files

Article information

Article type
Communication
Submitted
19 Mar 2025
Accepted
09 May 2025
First published
12 May 2025
This article is Open Access
Creative Commons BY-NC license

Mater. Horiz., 2025, Advance Article

Mesoscale superlubric Brownian machine based on 2D graphitic interfaces

K. Stein, G. Vijayan, R. Bessler and E. Koren, Mater. Horiz., 2025, Advance Article , DOI: 10.1039/D5MH00495K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements