Temperature- and time-dependent degradation of mouse tissue proteins: insights into RNA-binding protein stability via mass spectrometry

Abstract

In proteomics research, samples are frequently stored at −20 °C and −80 °C for extended periods, and assessing protein stability under these conditions is essential. We evaluated protein stability in healthy and diseased mice liver tissues stored at 4 °C, −20 °C, and −80 °C for 0, 7, 30, 90, and 180 days. A 10% variation in protein concentrations (by day 90, p < 0.001) was observed via BCA assay across all conditions. Untargeted proteomic analysis was performed using in-solution trypsin digestion and LC-Q-Orbitrap-MS/MS, with data processed using Proteome Discoverer 2.5. Proteins were shortlisted based on ≥2 unique peptides, FDR < 1%, and abundance ratio p ≤ 0.001. Differentially expressed proteins were identified using log 2 FC ± 2, p-adj ≤ 0.05. Protein degradation varied with storage conditions. In healthy tissues, 24, 11, and 8 proteins completely degraded at 4 °C, −20 °C, and −80 °C, respectively, after 7 days, compared to 8, 2, and 3 proteins in diseased tissues. The total number of significant proteins consistently identified across all time points in healthy samples was 2570, 2711, and 2617, and in diseased samples it was 2124, 2414, and 2353 at 4 °C, −20 °C, and −80 °C, respectively. RNA-binding proteins, such as La ribonucleoprotein 1B, Reticulophagy regulator 3, and Telomerase RNA component interacting RNase, were particularly prone to degradation across all conditions within 7 days. Notably, 18 degraded proteins were reported as biomarkers in disease conditions. Although −20 °C and −80 °C provided better preservation, residual instability persisted. Optimizing storage conditions is essential to prevent degradation, particularly for biomarker discovery studies.

Graphical abstract: Temperature- and time-dependent degradation of mouse tissue proteins: insights into RNA-binding protein stability via mass spectrometry

Supplementary files

Article information

Article type
Research Article
Submitted
23 Jan 2025
Accepted
10 Jun 2025
First published
14 Jul 2025

Mol. Omics, 2025, Advance Article

Temperature- and time-dependent degradation of mouse tissue proteins: insights into RNA-binding protein stability via mass spectrometry

A. Suresh, N. Pallaprolu, A. Dande, H. K. Pogula, V. K. Parihar and R. Peraman, Mol. Omics, 2025, Advance Article , DOI: 10.1039/D5MO00020C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements