Nanoscale Quality Control Framework for Assessing FFPE DNA Integrity in Cancer Research

Abstract

Formalin-fixed paraffin-embedded (FFPE) samples are widely used in cancer research and clinical diagnostics for preserving tissue morphology and enabling long-term storage. However, FFPE-induced DNA degradation, crosslinking, and inconsistent quality control significantly hinder their utility in molecular analyses. In this study, we established a robust nanoscale quality control (QC) framework incorporating gel electrophoresis and quantitative polymerase chain reaction (qPCR) to evaluate DNA integrity in clinical tissue FFPE samples. Our findings demonstrate a quantifiable inverse correlation between the degree of DNA fragmentation and amplification efficiency in FFPE samples. Further analysis of 26 single nucleotide polymorphism loci using targeted next-generation sequencing demonstrated substantial improvements in DNA integrity after enzymatic repair. A comparative whole-exome sequencing analysis of endometrial carcinoma samples with different archival durations demonstrated significantly increased damage levels across multiple genomic features in long-term stored specimens, highlighting the cumulative impact of archival duration. These findings emphasize the detrimental effects of prolonged storage on FFPE DNA quality. Our QC framework enables effective sample stratification, facilitating the selection of high-integrity specimens for sequencing and guiding heavily degraded samples toward targeted short-amplicon assays. This comprehensive strategy enhances the reliability of FFPE-derived DNA in clinical genomics, improving the accuracy and reproducibility of archival biospecimen-based research.

Supplementary files

Article information

Article type
Communication
Submitted
24 Mar 2025
Accepted
29 May 2025
First published
02 Jun 2025

Nanoscale Horiz., 2025, Accepted Manuscript

Nanoscale Quality Control Framework for Assessing FFPE DNA Integrity in Cancer Research

Z. Huang, Y. Si, Y. Zhang, Z. Huang, X. Xiu, Y. Wang, Y. Wang, C. Fan and P. song, Nanoscale Horiz., 2025, Accepted Manuscript , DOI: 10.1039/D5NH00176E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements