Photodoping of graphene with long-lived electrons by interfacing with Janus WSSe

Abstract

The performance of semiconductor optoelectronic devices depends on efficient photodoping of active materials, where optical excitation generates photocarriers. Despite more than two decades of research, efficient photodoping in graphene remains elusive due to the formation of neutral excitons with ultrashort lifetimes. Here, by interfacing graphene with a Janus WSSe monolayer, we achieve unipolar photodoping of graphene with long-lived carriers. The Janus monolayer was synthesized via selenium implantation of WS2 monolayers grown by chemical vapor deposition. We fabricated the heterostructure by transferring a mechanically exfoliated graphene monolayer onto the Se-terminated side of WSSe. Through photoluminescence and transient absorption spectroscopy, we demonstrate that photoexcited electrons in WSSe transfer efficiently to graphene, while a portion of the photoexcited holes remains confined in WSSe due to its built-in electric field. This charge separation leads to a net electron population in graphene. These electrons exhibit extended lifetimes due to spatial separation from their recombination partners, offering a promising route to enhancing the performance of graphene-based optoelectronic devices.

Graphical abstract: Photodoping of graphene with long-lived electrons by interfacing with Janus WSSe

Article information

Article type
Communication
Submitted
13 May 2025
Accepted
29 Jul 2025
First published
30 Jul 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale Horiz., 2025, Advance Article

Photodoping of graphene with long-lived electrons by interfacing with Janus WSSe

T. Zheng, Y. Lin, Z. Ni, K. Xiao and H. Zhao, Nanoscale Horiz., 2025, Advance Article , DOI: 10.1039/D5NH00337G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements