Manganese carbonyl-encapsulated Fe-MOFs as a H2O2-responsive CO gas nanogenerator for synergistic gas/chemodynamic therapy†
Abstract
The combination of chemodynamic therapy (CDT) and gas therapy holds significant promise for tumor treatment. In this study, we successfully synthesized an intelligent H2O2-responsive Fe-MOF nanotherapeutic agent, integrated with glucose oxidase (GOx) and manganese carbonyl (MnCO), to achieve synergistic cancer gas/CDT. Upon endocytosis by tumor cells, the nanotherapeutic agent catalyzes the conversion of endogenous glucose into gluconic acid and H2O2, which facilitates the release of CO gas and disrupts the energy supply. Subsequently, a Fenton reaction occurs between Fe-MOFs and intracellular H2O2, generating highly toxic hydroxyl radicals (˙OH) for CDT. Therefore, the engineered nanotherapeutic agent demonstrates a synergistic efficacy through CO gas therapy, reactive oxygen species (ROS)-mediated CDT, and energy starvation, effectively suppressing tumor growth.