Nano-spherical tip-based smoothing with minimal damage for 2D van der Waals heterostructures

Abstract

Two-dimensional materials and their heterostructures have significant potential for future developments in materials science and optoelectronics due to their unique properties. However, their fabrication and transfer process often introduce impurities and contaminants that degrade their intrinsic qualities. To address this issue, current atomic force microscopy (AFM) probe contact mode methods provide a solution by allowing in situ cleaning and real-time observation of the nanoscale cleaning process. Nevertheless, existing pyramidal probes may scratch surfaces and damage heterostructures during force application. Therefore, we proposed a method based on the nano-spherical probe contact mode to clean residual and polymer contamination for minimum damage cleaning of MoS2/hBN substrates. Comparative experiments with pyramidal probes in 2DM morphology and photoluminescence (PL) have shown that nano-spherical probes are exceptionally effective in cleaning bubbles of various sizes, compared to uncleaned MoS2, where PL full width at half maximum (FWHM) averages 0.115 eV, nano-spherical probes reduce it by 30% to 0.08 eV. Pyramidal probes, however, only clean smaller bubbles and leave residuals in larger ones, resulting in less optimal PL mapping data with values in both the 0.09 eV and 0.0115 eV regions. We also collected the standard deviation of the FWHM data points for the uncleaned region and the regions cleaned by the pyramidal and nano-spherical probes, which were 0.02773, 0.01895, and 0.00531, respectively. Notably, the standard deviation of the FWHM in the nano-spherical probe-cleaned region is only 28% of that in the pyramidal probe-cleaned region. Then, increasing the applied force leads to damage in the crystal structure, resulting in potential inconsistencies across different areas, as evidenced by KPFM and SEM observations. In contrast, nano-spherical probes demonstrate a uniform potential in KPFM and consistently maintain a smooth surface morphology in SEM throughout the process. This approach highlights the potential of nano-spherical probes to advance minimum-damage cleaning techniques in 2D material research and applications.

Graphical abstract: Nano-spherical tip-based smoothing with minimal damage for 2D van der Waals heterostructures

Supplementary files

Article information

Article type
Paper
Submitted
02 Sep 2024
Accepted
18 Nov 2024
First published
12 Dec 2024

Nanoscale, 2025, Advance Article

Nano-spherical tip-based smoothing with minimal damage for 2D van der Waals heterostructures

X. Ding, B. Qiao, P. C. Uzoma, M. A. Anwar, Y. Chen, L. Zhang, Y. Xu and H. Hu, Nanoscale, 2025, Advance Article , DOI: 10.1039/D4NR03583F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements