Issue 4, 2025

P-type doping in edge-enriched MoS2−x nanostructures via RF-generated nitrogen plasma

Abstract

In this work, we report an intuitive magnetron sputtering technique for the synthesis of vertically aligned MoS2 (v-MS) nanostructures. The morphology and orientation of the as-synthesized nanostructures can be modified by altering the parameters of the sputtering process. This work emphasizes the versatility of magnetron sputtering to synthesize edge-enriched vertically aligned 2D nanostructures. These structures have diverse applications, such as those in optoelectronics, hydrogen evolution, sensing, energy storage and catalysis. The vertically aligned nanostructure of MoS2 was confirmed using the field emission scanning electron microscopy and Raman spectroscopy techniques. Furthermore, we studied the plasma-based nitrogen doping process with minimal damage for introducing nitrogen atoms into 2D nanomaterials. A plasma discharged into a nitrogen environment, assisted by a simple radio frequency (RF) power supply, was employed for p-type doping in v-MS. The successful doping of nitrogen was investigated by Raman spectroscopy and X-ray photoelectron spectroscopy. Atomic force microscopy images confirmed the little surface damage resulting from the nitrogen doping technique. The change in work function resulting from doping was examined by Kelvin probe force microscopy and ultraviolet photoelectron spectroscopy. Optical emission spectroscopy (OES) study revealed the role of nitrogen plasma ions in doping with minimal surface damaging. This work demonstrates the effective alteration of the work function of the MoS2 nanomaterial via plasma treatment.

Graphical abstract: P-type doping in edge-enriched MoS2−x nanostructures via RF-generated nitrogen plasma

Supplementary files

Article information

Article type
Paper
Submitted
04 Sep 2024
Accepted
18 Nov 2024
First published
22 Nov 2024

Nanoscale, 2025,17, 2345-2353

P-type doping in edge-enriched MoS2−x nanostructures via RF-generated nitrogen plasma

K. B. Singh, J. Bora, B. Basumatary, S. Bora and A. R. Pal, Nanoscale, 2025, 17, 2345 DOI: 10.1039/D4NR03612C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements