Bioengineered NanoAid synergistically targets inflammatory pro-tumor processes to advance glioblastoma chemotherapy†
Abstract
Through transcriptomic analysis of patient-derived glioblastoma tissues, we identify an overactivation of inflammatory pathways that contribute to the development of a tumor-promoting microenvironment and therapeutic resistance. To address this critical mechanism, we present NanoAid, a biomimetic nanoplatform designed to target inflammatory pro-tumor processes to advance glioblastoma chemotherapy. NanoAid employs macrophage–membrane–liposome hybrids to optimize the delivery of COX-2 inhibitor parecoxib and paclitaxel. By inheriting macrophage characteristics, NanoAid not only efficiently traverses the blood–brain barrier and precisely accumulates within tumors but also enhances cancer cell uptake, thereby improving overall anticancer efficacy. Notably, the combination of parecoxib and paclitaxel effectively disrupts inflammatory pro-tumor processes while inducing a synergistic effect that inhibits tumor growth, overcomes therapeutic resistance, and minimizes adverse effects. This results in substantial tumor growth inhibition and extends the median survival of tumor-bearing mice. Thus, our study bridges clinical insights with fundamental research, potentially revolutionizing tumor therapy paradigms.