Issue 5, 2025

A temperature-sensitive and fluorescent Tr-CD/AuNP-based catalyst for efficient, monitorable, and recyclable catalytic reactions

Abstract

Gold nanoparticles (AuNPs) have been widely used as efficient and environmentally friendly catalysts due to their high specific surface area and abundant active sites. However, AuNP-based catalytic systems face several challenges, including the instability of AuNPs during the reaction, the difficulty in monitoring the process, which can easily result in insufficient reaction due to short reaction time or waste of resources due to long reaction time, as well as issues of catalyst recovery. This study proposes a novel catalyst integrating various functions, such as high stability, the capacity for real-time monitoring of the catalytic process, and rapid recycling. Temperature-sensitive polymers (HPEI-IBAm) terminated with isobutyramide (IBAm) groups were prepared by reacting isobutyric anhydride with hyperbranched polyethyleneimine (HPEI). Subsequently, temperature-sensitive and reducing fluorescent carbon dots (Tr-CDs) were synthesized using HPEI-IBAm as a carbon source. Tr-CDs can reduce the HAuCl4 precursor in situ, yielding high-performance catalysts, Tr-CDs/AuNPs, with both temperature-sensitive and fluorescence properties. With the help of changes in fluorescence intensity and the real-time synchronous change in the reaction conversion rate, monitoring of the catalytic reaction process is achieved. Moreover, their temperature sensitivity enables the rapid recovery of the catalysts. Using the reduction of p-nitrophenol as a model, we thoroughly investigated the catalytic performance of Tr-CDs/AuNPs. Importantly, the catalytic process exhibited a good linear relationship between the change in fluorescence intensity and the reaction time (R2 = 0.9993) and maintained a synchronous change with the conversion rate, enabling the monitoring of the reaction process. Meanwhile, the catalytic efficiency of this catalyst remained above 90% after five recycling and reuse cycles, indicating no obvious decline in catalytic activity. This catalyst demonstrates good performance, reusability, and real-time reaction monitoring, promising bright application prospects.

Graphical abstract: A temperature-sensitive and fluorescent Tr-CD/AuNP-based catalyst for efficient, monitorable, and recyclable catalytic reactions

Supplementary files

Article information

Article type
Paper
Submitted
14 Nov 2024
Accepted
29 Dec 2024
First published
02 Jan 2025

Nanoscale, 2025,17, 2644-2657

A temperature-sensitive and fluorescent Tr-CD/AuNP-based catalyst for efficient, monitorable, and recyclable catalytic reactions

W. Zhong, J. Zhang, C. Zhu, H. Tang, X. Liu, Z. Qiao and Y. Liu, Nanoscale, 2025, 17, 2644 DOI: 10.1039/D4NR04775C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements