C-2 fluorinated castanospermines as potent and specific α-glucosidase inhibitors: synthesis and structure–activity relationship study

Abstract

C-2 Fluorinated castanospermines have been synthesized from a well-protected aldehyde precursor and evaluated as glycosidase inhibitors in comparison with castanospermine, 1-epi-castanospermine and C-1 fluorinated castanospermines. While C-1 fluorinated castanospermines lose nearly all the glycosidase inhibition shown by castanospermine and 1-epi-castanospermine, C-2 fluorinated derivatives of castanospermine were found to be potent and highly specific α-glucosidase inhibitors; however, the C-2 fluorinated 1-epi-castanospermines showed a sharp decrease in inhibition towards all tested enzymes. Docking calculations attributed the sharp decrease of glycosidase inhibition of C-1 fluorinated castanospermines to the disappearance of hydrogen bonds between the original C-1 hydroxyls and residues Arg-526 and Asp-327. The retained potent and specific α-glucosidase inhibition of C-2 fluorinated castanospermines was achieved by the fluorine-induced reestablishment of the docking mode in the active site; and the sharply decreased inhibition of C-2 fluorinated 1-epi-castanospermines can be attributed to obvious binding distorsion and disappearance of the hydrogen bonding with residues His-600 and Arg-526. Reliability of the docking results was evaluated by Molecular Dynamics (MD) simulation, which provided necessary calibrations to the calculation results. The interaction modes of fluorine reported herein are different from the “mimic effect” of fluorine for hydrogen, offering insights and extending our previous work on fluorinated casuarines. These results would be important for the development of castanospermine-related drug candidates for the treatment of diabetes, viral infections and Pompe disease.

Graphical abstract: C-2 fluorinated castanospermines as potent and specific α-glucosidase inhibitors: synthesis and structure–activity relationship study

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
20 Sep 2024
Accepted
10 Feb 2025
First published
11 Feb 2025

Org. Biomol. Chem., 2025, Advance Article

C-2 fluorinated castanospermines as potent and specific α-glucosidase inhibitors: synthesis and structure–activity relationship study

Y. Li, M. Zhang, Y. Shimadate, A. Kato, J. Wang, Y. Jia, G. W. J. Fleet and C. Yu, Org. Biomol. Chem., 2025, Advance Article , DOI: 10.1039/D4OB01542H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements