Recent advances in asymmetric synthesis via cyclopropanol intermediates
Abstract
Cyclopropanols have attracted significant attention in organic synthesis as versatile three-carbon synthons, as this readily available class of donor-activated cyclopropanes undergoes miscellaneous transformations, either via ring-opening or with retention of the cyclopropane ring. This review summarizes stereoselective and stereoretentive transformations suitable for asymmetric synthesis. The utility of cyclopropanols is discussed for two main strategies: (i) substrate-controlled transformations using enantiomerically enriched cyclopropanol intermediates through a traditional approach, and (ii) the use of nonchiral or racemic cyclopropanols, where asymmetric induction is achieved through a chiral catalyst, representing a direction that has recently emerged.