Computational analysis of energetic features and intermolecular interactions in protein-inhibitor USP7 complexes

Abstract

Ubiquitin-specific proteases (USPs) play crucial roles in cellular processes and have emerged as promising therapeutic targets for various diseases, including cancer. This study utilizes a multi-faceted computational approach to investigate the binding mechanisms of small molecule inhibitors to USP7, a key member of the USP family. We combine transferable aspherical atom model (TAAM) calculations, density functional theory (DFT) analysis, and other computational tools to elucidate the electrostatic landscapes and non-covalent interactions in selected USP7-inhibitor complexes. Our findings demonstrate that electrostatic interactions are the dominant force in USP7-inhibitor binding, with charged residues contributing significantly to binding energies. Furthermore, the TAAM-based UBDB + EPMM method accurately captured the overall charge distribution, showing strong agreement with DFT calculations. We identified key residues involved in inhibitor binding, including previously overlooked contributors such as E298 and M407. The use of Hirshfeld surfaces and electrostatic potential (ESP) mapping provided detailed insights into the charge distribution and complementarity between USP7 and its inhibitors. Our results revealed that compounds with more concentrated positive charge distributions exhibited higher affinities Additionally, reduced density gradient (RDG) analysis offered further insight into the various non-covalent interactions at play. This study underscores the importance of long-range electrostatic interactions that extend beyond the immediate binding pocket. The insights gained from this work advance our understanding of USP7 inhibition and provide a valuable framework for the design of selective inhibitors targeting other members of the USP family.

Graphical abstract: Computational analysis of energetic features and intermolecular interactions in protein-inhibitor USP7 complexes

Supplementary files

Article information

Article type
Paper
Submitted
02 Dec 2024
Accepted
31 Mar 2025
First published
01 Apr 2025

Org. Biomol. Chem., 2025, Advance Article

Computational analysis of energetic features and intermolecular interactions in protein-inhibitor USP7 complexes

M. Ziemniak, U. Budniak, P. M. Dominiak and K. Woźniak, Org. Biomol. Chem., 2025, Advance Article , DOI: 10.1039/D4OB01953A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements