Issue 1, 2025

Herceptin-conjugated plasmonic gold nanocapsules for targeted NIR-II photothermal therapy

Abstract

In recent years, researchers have extensively studied nanomaterials for plasmonic photothermal therapy (PPTT), with most of the research focused on those active in the near-infrared I (NIR I) window (λ = 650–950 nm). However, there is growing interest in developing nanomaterials that are active in the near-infrared II (NIR II) region (λ = 950–1300 nm) due to the better penetrability and higher tolerance limit of NIR II light by human skin. In this study, the potential of gold nanocapsules (Au Ncap) with a rattle-like structure, consisting of a solid gold bead core and a porous, thin, rod-shaped gold shell was investigated for PPTT. Specifically, the targeted in vitro photothermal activity of Herceptin-conjugated gold nanocapsules that are active in both the NIR I and II regions are explored towards the Her2 positive SK-BR-3 breast cancer cell line. The conjugation of SH-PEG and Herceptin molecules on the surface of gold nanocapsules was validated through a detailed X-ray photoemission spectroscopy (XPS) analysis. The Au Ncap exhibited high photothermal conversion efficiency of 38.6% and in vitro PPTT results showed its excellent cytotoxicity against the SK-BR-3 cell line leading to apoptotic cell death. These findings suggest that this nanostructure can serve as an efficient photothermal agent in the NIR II region showing excellent PPTT activity at a low laser power density of 0.5 W cm−2.

Graphical abstract: Herceptin-conjugated plasmonic gold nanocapsules for targeted NIR-II photothermal therapy

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2024
Accepted
15 Nov 2024
First published
21 Nov 2024
This article is Open Access
Creative Commons BY-NC license

RSC Pharm., 2025,2, 124-134

Herceptin-conjugated plasmonic gold nanocapsules for targeted NIR-II photothermal therapy

P. Singh, A. Sarkar, N. Mukherjee and A. Jaiswal, RSC Pharm., 2025, 2, 124 DOI: 10.1039/D4PM00244J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements