Strategies to Overcome Antibiotic Resistance: Silver Nanoparticles and Vancomycin in Pathogen Eradication
Abstract
The increasing prevalence of antibiotic resistance presents a significant challenge to public health, undermining the efficacy of conventional antibiotic treatments. Given the scarcity of new antibiotics and efficient preventive strategies, the exploration of alternative treatments has become imperative. For many years, vancomycin, a glycopeptide antibiotic, has been considered a last resort for treating severe Gram-positive bacterial infections. However, the emergence of vancomycin-resistant bacteria has raised significant concerns. The expanding use of nanomaterials in healthcare settings has shifted the spotlight towards innovative antibacterial nanomaterials, potentially offering solutions to the resistance crisis. One of the promising approaches to combat resistance involves employing metal nanoparticles to enhance antibiotic efficacy. Silver nanoparticles (AgNPs) have garnered particular interest due to their extensively documented broad-spectrum and robust antimicrobial properties, especially against bacterial biofilms, making them useful against multidrug-resistant pathogens. Recent evidence suggests synergistic antibacterial activity when AgNPs are combined with vancomycin. This innovative approach offers the potential to mitigate associated side effects and improve susceptibility to resistant strains. Consequently, the combination of vancomycin and AgNPs presents a compelling strategy for addressing bacterial infections. This review delves into the interactions between AgNPs and vancomycin, providing valuable insights into combating antibiotic resistance. Current research efforts continue to investigate and underscore the advancement of formulation strategies and their performance evaluation in a wide array of infection paradigms. This continuing work aims to enhance our understanding of drug delivery systems and their therapeutic potential across various infectious diseases.