A facile route for the chemical functionalisation of polydivinylbenzenes and the application of amphoteric polydivinylbenzene microspheres to the simultaneous solid-phase extraction of acidic and basic drugs from water samples

Abstract

Mixed-mode ion-exchange sorbents with amphoteric character are intriguing materials because not only can anions and cations be extracted from liquid samples using one single sorbent rather than two (anion extraction under one set of conditions, cation extraction under a second set of conditions), but it may be feasible to establish extraction conditions where anionic and cationic analytes can be extracted simultaneously. In the present study, an unusual but versatile synthetic route was used to install amphoteric character into polydivinylbenzene microspheres produced through precipitation polymerisation. The key synthetic step used for the chemical functionalisation of the polydivinylbenzenes exploited Diels–Alder cycloaddition chemistry to target the pendent styryl groups that are present in polydivinylbenzenes. With maleic anhydride as a dienophile, Diels–Alder cycloaddition yielded polydivinylbenzenes decorated with anhydride moieties. Whilst such materials are interesting in their own right as reactive resins, ring-opening of the polymer-bound anhydride units with ethylenediamine yielded an amphoteric material with both weak anion-exchange (WAX) and weak cation-exchange (WCX) character. This polymer was evaluated as a pH-tuneable sorbent for the solid-phase extraction (SPE) of acidic and basic pharmaceuticals from water samples. Following optimisation of the analytical method including the SPE, the method was subjected to validation and then applied to the extraction and determination of acidic and basic pharmaceuticals present at low concentrations in river water, effluent wastewater and influent wastewater samples. Simultaneous extraction and determination of acidic and basic compounds was found to be achievable, with method quantification limits down to 1 ng L−1.

Graphical abstract: A facile route for the chemical functionalisation of polydivinylbenzenes and the application of amphoteric polydivinylbenzene microspheres to the simultaneous solid-phase extraction of acidic and basic drugs from water samples

Supplementary files

Article information

Article type
Paper
Submitted
18 Nov 2024
Accepted
20 Dec 2024
First published
28 Dec 2024
This article is Open Access
Creative Commons BY license

Polym. Chem., 2025, Advance Article

A facile route for the chemical functionalisation of polydivinylbenzenes and the application of amphoteric polydivinylbenzene microspheres to the simultaneous solid-phase extraction of acidic and basic drugs from water samples

F. Borrull, P. A. G. Cormack, A. Corrigan, C. Craig, N. Fontanals, R. M. Marcé, A. Moral and G. Smith, Polym. Chem., 2025, Advance Article , DOI: 10.1039/D4PY01312C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements